qualia_plugin_snn.learningmodel.pytorch.layers package
Subpackages
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly package
- Submodules
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.Add module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.QuantizedAdd module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.layers1d module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.layers2d module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.quantized_layers module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.quantized_layers1d module
- qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.quantized_layers2d module
- Module contents
- Submodules
Submodules
- qualia_plugin_snn.learningmodel.pytorch.layers.CustomNode module
- qualia_plugin_snn.learningmodel.pytorch.layers.quantized_SNN_layers module
QuantizedLIFNode
QuantizedLIFNode.v
QuantizedLIFNode.v_threshold
QuantizedLIFNode.v_reset
QuantizedLIFNode.tau
QuantizedLIFNode.__init__()
QuantizedLIFNode.supported_backends
QuantizedLIFNode.neuronal_charge()
QuantizedLIFNode.single_step_forward()
QuantizedLIFNode.multi_step_forward()
QuantizedLIFNode.reciprocal_tau
QuantizedLIFNode.quantize_v_and_hyperparams()
QuantizedLIFNode.get_hyperparams_tensor()
QuantizedLIFNode.weights_q
QuantizedLIFNode.weights_round_mode
QuantizedIFNode
QuantizedIFNode.v
QuantizedIFNode.v_threshold
QuantizedIFNode.v_reset
QuantizedIFNode.__init__()
QuantizedIFNode.supported_backends
QuantizedIFNode.neuronal_charge()
QuantizedIFNode.single_step_forward()
QuantizedIFNode.multi_step_forward()
QuantizedIFNode.quantize_v_and_hyperparams()
QuantizedIFNode.get_hyperparams_tensor()
QuantizedIFNode.weights_q
QuantizedIFNode.weights_round_mode
QuantizedATIF
Module contents
Contains implementation for custom or quantized layers for spiking neural networks.
- class qualia_plugin_snn.learningmodel.pytorch.layers.ATIF[source]
Bases:
BaseNode
IFSRLSJ: Integrate and Fire soft-reset with learnable Vth and activation scaling, based on spikingjelly.
- __init__(v_threshold: float = 1.0, vth_init_l: float = 0.8, vth_init_h: float = 1.0, alpha: float = 1.0, device: str = 'cpu') None [source]
Construct
ATIF
.- Parameters:
v_threshold (float) – Factor to apply to the uniform initialization bounds
vth_init_l (float) – Lower bound for uniform initialization of threshold Tensor
vth_init_h (float) – Higher bound for uniform initialization of threshold Tensor
alpha (float) – Sigmoig surrogate scale factor
device (str) – Device to run the computation on
- Return type:
None
- property supported_backends: tuple[Literal['torch']]
Supported step_mode and backend.
Only single-step mode with torch backend is supported.
- Returns:
Tuple of
'torch'
ifstep_mode
is's'
- Raises:
ValueError – When
step_mode
is not's'
- get_coeffs() Tensor [source]
Return the Tensor of threshold
v_threshold
.- Returns:
Tensor of threshold
v_threshold
- Return type:
- set_coeffs(v_threshold: Tensor) None [source]
Replace the Tensor of threshold
v_threshold
.- Parameters:
v_threshold (Tensor) – New Tensor of threshold to replace
v_threshold
- Return type:
None
- class qualia_plugin_snn.learningmodel.pytorch.layers.IFSRL[source]
Bases:
Module
IFSRL: Integrate and Fire soft-reset with learnable Vth and activation scaling.
- __init__(v_threshold: float = 1.0, vth_init_l: float = 0.8, vth_init_h: float = 1.0, alpha: float = 1.0, device: str = 'cpu') None [source]
Construct
IFSRL
.- Parameters:
v_threshold (float) – Factor to apply to the uniform initialization bounds
vth_init_l (float) – Lower bound for uniform initialization of threshold Tensor
vth_init_h (float) – Higher bound for uniform initialization of threshold Tensor
alpha (float) – Sigmoig surrogate scale factor
device (str) – Device to run the computation on
- Return type:
None
- get_coeffs() Tensor [source]
Return the Tensor of threshold
vp_th
.- Returns:
Tensor of threshold
vp_th
- Return type:
- set_coeffs(vp_th: Tensor) None [source]
Replace the Tensor of threshold
vp_th
.- Parameters:
vp_th (Tensor) – New Tensor of threshold to replace
vp_th
- Return type:
None