Source code for qualia_plugin_snn.learningmodel.pytorch.layers.CustomNode

"""ATIF-u: spiking neuron with learnable quantization steps.

Author: Andrea Castagetti <Andrea.CASTAGNETTI@univ-cotedazur.fr>
"""

from __future__ import annotations

import logging
import sys
from typing import Any, Literal, cast

import torch
from qualia_core.typing import TYPE_CHECKING
from spikingjelly.activation_based.neuron import BaseNode  # type: ignore[import-untyped]
from torch import nn

if TYPE_CHECKING:
    from torch.autograd.function import FunctionCtx  # noqa: TC002

if sys.version_info >= (3, 12):
    from typing import override
else:
    from typing_extensions import override

logger = logging.getLogger(__name__)

[docs] def heaviside(x: torch.Tensor) -> torch.Tensor: """Heaviside function. :param x: Input tensor :return: Boolean tensor of the same dimension as `x` where each element is ``True`` if the element in `x` is greater than or equal to 0, ``False`` otherwise """ return (x >= 0).to(x)
[docs] class SpikeFunctionSigmoid(torch.autograd.Function): """Spike functions with surrogate bkw gradient."""
[docs] @staticmethod @override def forward(ctx: FunctionCtx, *args: torch.Tensor, **_: Any) -> torch.Tensor: """Forward of :func:`heaviside` function. :param ctx: A context object used to save tensors for :meth:`backward` :param args: Tuple of 2 tensors for ``x`` and ``alpha``, respectively, saved in ``ctx`` for backward pass :param _: Unused :return: Tensor of :func:`heaviside` applied over ``x``. """ x, alpha = args if x.requires_grad: ctx.save_for_backward(x, alpha) return heaviside(x)
[docs] @staticmethod @override def backward(ctx: torch.autograd.Function, *grad_outputs: torch.Tensor) -> tuple[torch.Tensor | None, None]: """Backward pass of surrogate gradient using :meth:`torch.Tensor.sigmoid_` function. :param ctx: Context to restore the ``x`` and ``alpha`` tensors from :param grad_outputs: Output tensor from the computation of the :meth:`forward` pass :return: A tuple of Tensor and None with the first element being the computed gradient for ``x`` or None if there is no gradient to compute and the second element a placeholder for the gradient of ``alpha``. """ grad_x = None grad_output = grad_outputs[0] if ctx.needs_input_grad[0]: x, alpha = cast(tuple[torch.Tensor, torch.Tensor], ctx.saved_tensors) # Couple of tensors saved in forward() device = x.device sgax = ((x * alpha.to(device=device)).sigmoid_()).to(device=device) grad_x = (grad_output.to(device=device) * (1. - sgax.to(device=device)) * sgax.to(device=device) * alpha.to(device=device)) return grad_x, None
[docs] @classmethod @override def apply(cls, *args: torch.Tensor, **kwargs: Any) -> torch.Tensor: """Apply heaviside activation with sigmoid surrogate gradient. :param args: Input tensor :param kwargs: Unused :return: Output tensor """ return cast(torch.Tensor, super().apply(*args, **kwargs)) # type: ignore[no-untyped-call]
[docs] class IFSRL(nn.Module): """IFSRL: Integrate and Fire soft-reset with learnable Vth and activation scaling.""" v: torch.Tensor
[docs] def __init__(self, v_threshold: float = 1.0, vth_init_l: float = 0.8, vth_init_h: float = 1., alpha: float = 1., device: str = 'cpu') -> None: """Construct :class:`IFSRL`. :param v_threshold: Factor to apply to the uniform initialization bounds :param vth_init_l: Lower bound for uniform initialization of threshold Tensor :param vth_init_h: Higher bound for uniform initialization of threshold Tensor :param alpha: Sigmoig surrogate scale factor :param device: Device to run the computation on """ self.call_super_init = True # Support multiple inheritance from nn.Module super().__init__() self.v_threshold = v_threshold self.alpha = alpha self.device = device self.vp_th = torch.nn.Parameter(torch.ones(1).to(self.device), requires_grad=True) self.v = torch.zeros(1, device=device) with torch.no_grad(): _ = nn.init.uniform_(self.vp_th, a=vth_init_l * self.v_threshold, b=vth_init_h * self.v_threshold)
[docs] def get_coeffs(self) -> torch.Tensor: """Return the Tensor of threshold :attr:`vp_th`. :return: Tensor of threshold :attr:`vp_th` """ return self.vp_th
[docs] def set_coeffs(self, vp_th: torch.Tensor) -> None: """Replace the Tensor of threshold :attr:`vp_th`. :param vp_th: New Tensor of threshold to replace :attr:`vp_th` """ _ = self.vp_th.copy_(vp_th)
[docs] def reset(self) -> None: """Reset potential to 0.""" _ = self.v.zero_() # midrise quantizer
[docs] def ifsrl_fn(self, x: torch.Tensor) -> torch.Tensor: """Integrate-and-Fire soft-reset neuron with learnable threshold. :param x: Input tensor :return: Output tensor """ # Primary membrane charge self.v = self.v + x # Fire q = (self.v - self.vp_th) z = SpikeFunctionSigmoid.apply(q, self.alpha * torch.ones(1).to(self.device)).float() # Soft-Reset self.v = (1. - z) * self.v + z * (self.v - self.vp_th) return z
[docs] @override def forward(self, input: torch.Tensor) -> torch.Tensor: """Forward of :meth:`ifsrl_fn`. :param input: Input tensor :return: Output tensor """ x = input return self.ifsrl_fn(x)
[docs] class ATIF(BaseNode): # type: ignore[misc] """IFSRLSJ: Integrate and Fire soft-reset with learnable Vth and activation scaling, based on spikingjelly.""" v: torch.Tensor
[docs] def __init__(self, v_threshold: float = 1.0, vth_init_l: float = 0.8, vth_init_h: float = 1., alpha: float = 1., device: str = 'cpu') -> None: """Construct :class:`ATIF`. :param v_threshold: Factor to apply to the uniform initialization bounds :param vth_init_l: Lower bound for uniform initialization of threshold Tensor :param vth_init_h: Higher bound for uniform initialization of threshold Tensor :param alpha: Sigmoig surrogate scale factor :param device: Device to run the computation on """ self.call_super_init = True # Support multiple inheritance from nn.Module super().__init__(v_threshold=v_threshold, v_reset=None, surrogate_function=SpikeFunctionSigmoid.apply, step_mode='s') # init the base class self.device = device self.alpha = alpha self.v_threshold = torch.nn.Parameter(torch.ones(1).to(self.device) * v_threshold, requires_grad=True) self.v = torch.zeros(1, device=device) with torch.no_grad(): _= nn.init.uniform_(self.v_threshold, a=vth_init_l * v_threshold, b=vth_init_h * v_threshold)
@property @override # type: ignore[misc] def supported_backends(self) -> tuple[Literal['torch']]: """Supported step_mode and backend. Only single-step mode with torch backend is supported. :return: Tuple of ``'torch'`` if :attr:`step_mode` is ``'s'`` :raise ValueError: When :attr:`step_mode` is not ``'s'`` """ if self.step_mode == 's': return ('torch',) logger.error("Only step_mode='s' is supported, current step_mode='%s'", self.step_mode) raise ValueError
[docs] def get_coeffs(self) -> torch.Tensor: """Return the Tensor of threshold :attr:`v_threshold`. :return: Tensor of threshold :attr:`v_threshold` """ return self.v_threshold
[docs] def set_coeffs(self, v_threshold: torch.Tensor) -> None: """Replace the Tensor of threshold :attr:`v_threshold`. :param v_threshold: New Tensor of threshold to replace :attr:`v_threshold` """ _ = self.v_threshold.copy_(v_threshold)
[docs] def ifsrl_fn(self, x: torch.Tensor) -> torch.Tensor: """Integrate-and-Fire soft-reset neuron with learnable threshold. :param x: Input tensor :return: Output tensor """ # Primary membrane charge self.v_float_to_tensor(x) self.v = self.v + x # Fire q = (self.v - self.v_threshold) z = SpikeFunctionSigmoid.apply(q, self.alpha * torch.ones(1).to(self.device)).float() # Soft-Reset self.v = (1. - z) * self.v + z * (self.v - self.v_threshold) return z * self.get_coeffs()
[docs] @override # type: ignore[misc] def single_step_forward(self, x: torch.Tensor) -> torch.Tensor: """Single-step mode forward of ATIF. Calls :meth:`ifsrl_fn`. :param x: Input tensor :return: Output tensor """ return self.ifsrl_fn(x)