qualia_core.preprocessing package
Submodules
- qualia_core.preprocessing.BandPassFilter module
- qualia_core.preprocessing.Class2BinMatrix module
- qualia_core.preprocessing.CopySet module
- qualia_core.preprocessing.DatamodelConverter module
- qualia_core.preprocessing.DatasetSplitter module
- qualia_core.preprocessing.DatasetSplitterBySubjects module
- qualia_core.preprocessing.MFCC module
- qualia_core.preprocessing.Normalize module
- qualia_core.preprocessing.Preprocessing module
- qualia_core.preprocessing.PrintHARDataModelSummary module
- qualia_core.preprocessing.RemoveActivity module
- qualia_core.preprocessing.RemoveSensor module
- qualia_core.preprocessing.Reshape2DTo1D module
- qualia_core.preprocessing.VisualizeActivities module
- qualia_core.preprocessing.VisualizeWindows module
- qualia_core.preprocessing.Window module
Module contents
- class qualia_core.preprocessing.BandPassFilter(f1: float, f2: float, fs: float, sensorkind, dimension: str)[source]
Bases:
Preprocessing
Band pass filter Requires fixed sampling frequency, do an interpolation before.
- class qualia_core.preprocessing.Class2BinMatrix(classes: int = None)[source]
Bases:
Preprocessing
Warning: must be applied after Window
- class qualia_core.preprocessing.CopySet(source: str = 'train', dest: str = 'test', ratio: float = 0.1)[source]
Bases:
Preprocessing
[RawDataModel
,RawDataModel
]
- class qualia_core.preprocessing.DatamodelConverter[source]
Bases:
Preprocessing
[HARDataModel
,RawDataModel
]
- class qualia_core.preprocessing.DatasetSplitterBySubjects(source_subjects: list[Any], dest_subjects: list[Any], source: str = 'train', dest: str = 'test')[source]
Bases:
Preprocessing
[RawDataModel
,RawDataModel
]Warning: must be applied after Window to get correct split and randomization of windows.
- class qualia_core.preprocessing.DatasetSplitter(source: str = 'train', dest: str = 'test', ratio: float = 0.1)[source]
Bases:
Preprocessing
[RawDataModel
,RawDataModel
]
- class qualia_core.preprocessing.MFCC(sample_rate: int, n_mfcc: int, dct_type: int = 2, norm: str = 'ortho', log_mels=False, melkwargs: dict = {}, chunks: int = 4, dims: int = 1)[source]
Bases:
Preprocessing
- class qualia_core.preprocessing.Normalize(method: str = 'z-score', axis: tuple[int, ...] = (0,), debug: bool = False)[source]
Bases:
Preprocessing
[RawDataModel
,RawDataModel
]- z_score(dataset: RawDataModel) RawDataModel [source]
- min_max(datamodel: RawDataModel) RawDataModel [source]
- methods: ClassVar[dict[str, Callable[[Self, RawDataModel], RawDataModel]]] = {'min-max': <function Normalize.min_max>, 'z-score': <function Normalize.z_score>}
- class qualia_core.preprocessing.PrintHARDataModelSummary[source]
Bases:
Preprocessing
- log = []
- class qualia_core.preprocessing.RemoveActivity(activities, noconvert: bool = False)[source]
Bases:
Preprocessing
- class qualia_core.preprocessing.RemoveSensor(sensorkinds, noconvert: bool = False)[source]
Bases:
Preprocessing
- class qualia_core.preprocessing.Reshape2DTo1D[source]
Bases:
Preprocessing