qualia_core.postprocessing package

Submodules

Module contents

class qualia_core.postprocessing.PostProcessing[source]

Bases: ABC, Generic[T]

process_name(name: str) str[source]
process_framework(framework: LearningFramework[T]) LearningFramework[Any][source]
process_mem_params(mem_params: int) Callable[[LearningFramework[T], T], int][source]
process_model(model: T, model_conf: ModelConfigDict, framework: LearningFramework[T]) tuple[T, ModelConfigDict][source]
class qualia_core.postprocessing.QualiaCodeGen(quantize: str, long_width: int | None = None, outdir: str | None = None, metrics: list[str] | None = None)[source]

Bases: Converter[Any]

deployers: ModuleType | None = <module 'qualia_core.deployment.qualia_codegen' from '/home/runner/work/qualia-core/qualia-core/src/qualia_core/deployment/qualia_codegen/__init__.py'>

Suggested deployers

convert_model_to_modelgraph(model: nn.Module | keras.Model) ModelGraph | None[source]
convert_modelgraph_to_c(modelgraph: ModelGraph, output_path: Path) str | None[source]
convert_metrics_to_cpp(metrics: list[str], output_path: Path) str | None[source]
convert(framework: LearningFramework[nn.Module | keras.Model], model: nn.Module | keras.Model, model_name: str, representative_dataset: numpy.typing.NDArray[Any]) QualiaCodeGen | None[source]
property h: str | None
property name: str | None
property directory: Path | None
process_mem_params(mem_params: int) Callable[[LearningFramework[nn.Module | keras.Model], nn.Module | keras.Model], int][source]