Source code for qualia_codegen_core.Validator

# Copyright 2021 (c) Pierre-Emmanuel Novac <penovac@unice.fr> Université Côte d'Azur, CNRS, LEAT. All rights reserved.

from __future__ import annotations

import logging
import math
from dataclasses import dataclass

from qualia_codegen_core.graph.RoundMode import RoundMode
from qualia_codegen_core.typing import TYPE_CHECKING

from .graph.layers import TActivationLayer, TBaseLayer, TBatchNormalizationLayer, TFlattenLayer, TPermuteLayer, TSumLayer
from .graph.layers.TActivationLayer import TActivation

if TYPE_CHECKING:
    import sys
    if sys.version_info >= (3, 10):
        from typing import TypeGuard
    else:
        from typing_extensions import TypeGuard
    from qualia_codegen_core.graph.LayerNode import LayerNode  # noqa: TC001

logger = logging.getLogger(__name__)

[docs] @dataclass class TBaseLayerWithActivation(TBaseLayer): activation: TActivation
[docs] class Validator: """Class used to validate various parts of the model to make sure they conform to the limitation of the conversion tool.""" def __has_activation_attribute(self, layer: TBaseLayer) -> TypeGuard[TActivationLayer | TBaseLayerWithActivation]: return hasattr(layer, 'activation')
[docs] def validate_combined_activation(self, layer: TBaseLayer) -> bool: if self.__has_activation_attribute(layer): if layer.activation == TActivation.SOFTMAX and not isinstance(layer, TActivationLayer): # not a standalone softmax logger.error('Softmax activation must be used as a standalone layer, not combined to another layer (%s)', layer.__class__.__name__) return False if layer.activation not in [TActivation.LINEAR, TActivation.RELU, TActivation.RELU6]: logger.error('Activation function %s not supported', layer.activation) return False # No activation is ok as well return True
[docs] def validate_batchnorm(self, node: LayerNode) -> bool: if not isinstance(node.layer, TBatchNormalizationLayer): # Not BatchNorm, ignore return True # Detect variable depth not matching input_shape channels wrong_shape_vars = {var: getattr(node.layer, var) for var in ['kernel', 'bias'] if getattr(node.layer, var).shape != node.input_shape[0][-1:]} for name, var in wrong_shape_vars.items(): logger.error('Variable %s with shape %s does not match last dimension of input shape %s', name, var.shape, node.input_shape[-1:]) return not wrong_shape_vars
[docs] def validate_flatten(self, node: LayerNode) -> bool: if not isinstance(node.layer, TFlattenLayer): # Not Flatten, ignore return True if len(node.innodes) != 1: logger.error('Flatten should only have one input node') return False if len(node.output_shape) != 1: logger.error('Flatten should only have one output shape') return False inelements = math.prod(math.prod(e[1:]) for e in node.input_shape) if inelements != node.output_shape[0][-1]: logger.error('Number of elements for Flatten input_shape (%s) and output_shape (%s) do not match', inelements, node.output_shape[-1]) return False return True
[docs] def validate_global_sum_pooling(self, node: LayerNode) -> bool: if isinstance(node.layer, TSumLayer): if node.outnodes: logger.error('Sum is only supported as the last layer for Global Sum Pooling') return False if len(node.innodes) != 1: logger.error('Global Sum Pooling should only have one input node') return False if len(node.input_shape[0]) == 3: # noqa: PLR2004 1D, (N, S, C) if node.layer.dim != (-1,): logger.error('Global Sum Pooling 1D should apply to last dimension (-1), dim=%s', node.layer.dim) return False elif len(node.input_shape[0]) == 4: # noqa: PLR2004 2D, (N, H, W, C) if node.layer.dim != (-2, -1): logger.error('Global Sum Pooling 2D should apply to the two last dimensions (-2, -1), dim=%s', node.layer.dim) return False else: logger.error('Global Sum Pooling input should have 3 (1D: N, S, C) or 4 (2D: N, H, W, C) dimensions') return False return True
[docs] def validate_round_mode(self, node: LayerNode) -> bool: """Check if layer activation round mode is not None when number_type is int. :param node: LayerNode to check the activation round mode of :return: ``True`` if layer's round mode is neither None nor :attr:`qualia_codegen_core.graph.RoundMode.RoundMode.NONE` when layer's number_type is int, otherwise ``False`` """ if isinstance(node.q.number_type, int) and ( node.q.output_round_mode is None or node.q.output_round_mode == RoundMode.NONE): logger.error('Round mode must not be None when number type is int for layer %s', node.layer.name) return False return True
[docs] def validate_permute(self, node: LayerNode) -> bool: """Check that the batch dimension (index 0) is not permuted with the permute operation. :param node: LayerNode with a :class:`qualia_codegen_core.graph.layers.TPermuteLayer` ``layer`` :return: ``False`` if the batch dimension is permuted in a :class:`qualia_codegen_core.graph.layers.TPermuteLayer`, otherwise ``True`` """ if not isinstance(node.layer, TPermuteLayer): # Not BatchNorm, ignore return True if node.layer.dims[0] != 0: logger.error('Permuting batch dimension in %s is not supported since batched inference is not supported', node.layer.name) return False return True
[docs] def validate_node(self, node: LayerNode) -> bool: valid = True # Validate combined activation valid = valid and self.validate_combined_activation(node.layer) valid = valid and self.validate_batchnorm(node) valid = valid and self.validate_flatten(node) valid = valid and self.validate_global_sum_pooling(node) valid = valid and self.validate_round_mode(node) return valid and self.validate_permute(node)