Welcome to Qualia CodeGen Core’s documentation!
- Version:
2.5.1.dev20+gbaf7588
README.md
Copyright 2021 (c) Pierre-Emmanuel Novac penovac@unice.fr Université Côte d’Azur, CNRS, LEAT. All rights reserved.
Qualia-CodeGen-Core
Converts a pre-trained Keras .h5 or PyTorch model to C code for inference.
Generated C code uses channels_last data format.
Supported layers
Activation: ReLU (combined to previous Conv1D, Dense, MaxPooling1D, AveragePooling1D AddV2), Softmax
Conv1D: optional bias, valid padding only
Dense: optional bias
MaxPooling1D: valid padding only
AveragePooling1D: valid padding only
Flatten: implies reordering next layer’s kernel for data format conversion
ZeroPadding1D: combined with next Conv1D
AddV2
Dependencies
python >= 3.9
Python:
jinja2
numpy
Keras
Python:
tensorflow >= 2.6.0
keras >= 2.6.0
PyTorch
Python:
torch >= 1.8.0
Installation
pip install -e .
Usage
Generate C code from Keras .h5
qualia_codegen <model.h5> <output directory>
Use in your C code
Include the model: (can also be built as a separate object)
#include "model.h"
Allocate inputs and outputs arrays with correct dimensions. Remember that inputs must have channels_last data format.
Call it in your C code:
cnn(inputs, outputs);
Add the source file model.c to your build system. It includes all the other source files for layers, don’t add these to the build system.
Examples
See the src/qualia_codegen_core/examples/Linux directory for a demo console application to evaluate model accuracy.
src/qualia_codegen_core/examples/qualia_codegen-NucleoL476RG contains an STM32CubeIDE project for the Nucleo-L476RG board that’s currently broken due to some recent changes
Documentation
Nothing much…
Source tree
src/qualia_codegen_core/Allocator.py: manages activation buffer allocation. Tries to group all buffers into one, except when they cannot be overwritten (dependencies).
src/qualia_codegen_core/Converter.py: the actual conversion code, parses a Keras model and use the template file associated to each layer to generate C code. When weights have to be written, they are optionally quantized to fixed-point by setting the appropriate parameters of Converter constructor (see its definition)
src/qualia_codegen_core/Validator.py: work in progress, should contain functions to check if a model can be successfully converted. For now only check activation function.
src/qualia_codegen_core/assets/: contains the templates to generate C inference code
src/qualia_codegen_core/assets/layers/: contains the implementation of the various supported layers
src/qualia_codegen_core/assets/layers/weights: contains the support for the trainable layers weights
Indices and tables
APIs
- qualia_codegen_core package
- Subpackages
- Submodules
- Module contents
ConverterConverter.TEMPLATE_PATHConverter.combine_relu()Converter.combine_zeropadding()Converter.convert_model()Converter.generate_code()Converter.layer_template_filesConverter.optimize_modelgraph()Converter.preprocess_modelgraph()Converter.quantize_modelgraph()Converter.remove_dropout()Converter.remove_identity()Converter.rename_operators()Converter.render_template()Converter.template_path_prepend()Converter.validate_modelgraph()Converter.weights2carray()Converter.write_defines_header()Converter.write_layer_function()Converter.write_layer_header()Converter.write_layer_weights()Converter.write_model()Converter.write_model_header()Converter.write_numeric_header()
MetricsConverter