Source code for qualia_codegen_core.DataConverter

# Copyright 2021 (c) Pierre-Emmanuel Novac <penovac@unice.fr> Université Côte d'Azur, CNRS, LEAT. All rights reserved.

from __future__ import annotations

from typing import TYPE_CHECKING, Final

import numpy as np

if TYPE_CHECKING:
    from numpy.typing import DTypeLike

    from qualia_codegen_core.typing import NDArrayFloatOrInt


[docs] class DataConverter: dtype2ctype: Final[dict[DTypeLike, str]] = { np.float16: 'float', np.float32: 'float', np.float64: 'float', np.int8: 'int8_t', np.int16: 'int16_t', np.int32: 'int32_t', np.int64: 'int64_t', np.uint8: 'uint8_t', np.uint16: 'uint16_t', np.uint32: 'uint32_t', np.uint64: 'uint64_t', }
[docs] def qtype2ctype(self, number_type: type[int |float], width: int) -> str: if number_type is int: return f'{number_type.__name__}{width}_t' if number_type is float: return number_type.__name__ raise NotImplementedError
[docs] def ndarray2cinitializer(self, arr: NDArrayFloatOrInt) -> str: if np.ndim(arr) == 0: # If float, use hex for exact representation, gets promoted to float64 from float32 but no big deal if np.issubdtype(arr.dtype, np.floating): return float(arr).hex() return str(arr) return '{' + ', '.join([self.ndarray2cinitializer(subarr) for subarr in arr]) + '}\n'
[docs] def tensor2carray(self, arr: NDArrayFloatOrInt, name: str) -> dict[str, str | tuple[int, ...]]: arrdata = self.ndarray2cinitializer(arr) return {'name': name, 'data': arrdata, 'dtype': self.dtype2ctype[arr.dtype.type], 'shape': arr.shape}