Source code for qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.quantized_layers

"""Contain implementation of a QuantizedLinear layer with support for SpikingJelly ``step_mode``."""

from __future__ import annotations

import sys

from qualia_core.learningmodel.pytorch.layers import quantized_layers
from qualia_core.typing import TYPE_CHECKING
from spikingjelly.activation_based import functional  # type: ignore[import-untyped]
from spikingjelly.activation_based.base import StepModule  # type: ignore[import-untyped]

# We are inside a TYPE_CHECKING block but our custom TYPE_CHECKING constant triggers TCH001-TCH003 so ignore them
if TYPE_CHECKING:
    import torch  # noqa: TC002
    from qualia_core.learningmodel.pytorch.Quantizer import QuantizationConfig  # noqa: TC002
    from torch import nn  # noqa: TC002

if sys.version_info >= (3, 12):
    from typing import override
else:
    from typing_extensions import override

[docs] class QuantizedLinear(quantized_layers.QuantizedLinear, StepModule): # type: ignore[misc] """Add SpikingJelly's ``step_mode`` support to Qualia's quantized Linear layer."""
[docs] def __init__(self, # noqa: PLR0913 in_features: int, out_features: int, quant_params: QuantizationConfig, bias: bool = True, # noqa: FBT001, FBT002 activation: nn.Module | None = None, step_mode: str = 's') -> None: """Construct :class:`QuantizedLinear`. :param in_features: Dimension of input vector :param out_features: Dimension of output vector and number of neurons :param bias: If ``True``, adds a learnable bias to the output. :param quant_params: Dict containing quantization parameters, see :class:`qualia_core.learningmodel.pytorch.Quantizer.Quantizer` :param activation: Activation layer to fuse for quantization purposes, ``None`` if unfused or no activation :param step_mode: SpikingJelly's ``step_mode``, either ``'s'`` or ``'m'``, see :class:`spikingjelly.activation_based.layer.Linear` """ super().__init__(in_features=in_features, out_features=out_features, bias=bias, quant_params=quant_params, activation=activation) self.step_mode = step_mode
[docs] @override def extra_repr(self) -> str: """Add ``step_mode`` to the ``__repr__`` method. :return: String representation of :class:`torch.nn.Linear` with ``step_mode``. """ return super().extra_repr() + f', step_mode={self.step_mode}'
# Copied to call super().forward(x) of quantized_layers1d.Conv1d instead of torch.nn.Conv1d
[docs] @override def forward(self, input: torch.Tensor) -> torch.Tensor: """Forward :class:`qualia_core.learningmodel.pytorch.layers.quantized_layers.QuantizedLinear` with ``step_mode`` support. :param input: Input tensor :return: Output tensor """ x = input if self.step_mode == 's': x = super().forward(x) elif self.step_mode == 'm': x = functional.seq_to_ann_forward(x, super().forward) return x