Source code for qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.QuantizedAdd

"""Contain implementation of QuantizedAdd layer with support for SpikingJelly ``step_mode``."""
from __future__ import annotations

import logging
import sys

from qualia_core.learningmodel.pytorch.layers.QuantizedAdd import QuantizedAdd as QualiaCoreQuantizedAdd
from qualia_core.typing import TYPE_CHECKING
from spikingjelly.activation_based.base import StepModule  # type: ignore[import-untyped]

# We are inside a TYPE_CHECKING block but our custom TYPE_CHECKING constant triggers TCH001-TCH003 so ignore them
if TYPE_CHECKING:
    import torch  # noqa: TC002
    from qualia_core.learningmodel.pytorch.Quantizer import QuantizationConfig  # noqa: TC002

if sys.version_info >= (3, 12):
    from typing import override
else:
    from typing_extensions import override

logger = logging.getLogger(__name__)

[docs] class QuantizedAdd(QualiaCoreQuantizedAdd, StepModule): # type: ignore[misc] """Add SpikingJelly's ``step_mode`` support to Qualia's QuantizedAdd layer."""
[docs] def __init__(self, quant_params: QuantizationConfig, step_mode: str = 's') -> None: """Construct :class:`QuantizedAdd`. :param step_mode: SpikingJelly's ``step_mode``, either ``'s'`` or ``'m'``, see :class:`spikingjelly.activation_based.layer.Linear` """ super().__init__(quant_params=quant_params) self.step_mode = step_mode
[docs] @override def extra_repr(self) -> str: """Add ``step_mode`` to the ``__repr__`` method. :return: String representation of :class:`qualia_core.learningmodel.pytorch.layers.QuantizedAdd` with ``step_mode``. """ return super().extra_repr() + f', step_mode={self.step_mode}'
[docs] @override def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """Forward :class:`qualia_core.learningmodel.pytorch.layers.QuantizedAdd` with ``step_mode`` support. :param input: Input tensor :return: Output tensor """ if self.step_mode == 's': return super().forward(a, b) if self.step_mode == 'm': if a.dim() < 3 or b.dim() < 3: # noqa: PLR2004 logger.error('Expected inputs with shape [T, N, …], but got inputs with shape (%s, %s)', a.shape, b.shape) raise ValueError y_shape = [a.shape[0], a.shape[1]] y = super().forward(a.flatten(0, 1), b.flatten(0, 1)) y_shape.extend(y.shape[1:]) return y.view(y_shape) logger.error("step_mode must be either 's' or 'm', got: '%s'", self.step_mode) raise ValueError