Source code for qualia_plugin_snn.learningmodel.pytorch.SNN

"""Contains the base class for spiking neural network models."""

from __future__ import annotations

import logging

import spikingjelly.activation_based.base as sjb  # type: ignore[import-untyped]
import spikingjelly.activation_based.neuron as sj  # type: ignore[import-untyped]
from qualia_core.learningmodel.pytorch.LearningModelPyTorch import LearningModelPyTorch
from qualia_core.typing import TYPE_CHECKING

import qualia_plugin_snn.learningmodel.pytorch.layers.quantized_SNN_layers as qsj
from qualia_plugin_snn.learningmodel.pytorch.layers import CustomNode

if TYPE_CHECKING:
    from qualia_core.learningmodel.pytorch.Quantizer import QuantizationConfig  # noqa: TC002
    from qualia_core.typing import RecursiveConfigDict, RecursiveConfigUnion
    from torch import nn  # noqa: TC002

logger = logging.getLogger(__name__)

[docs] class SNN(LearningModelPyTorch, sjb.StepModule): # type: ignore[misc] """Base class for spiking neural network models to inherit from.""" timesteps: int #: Number of timesteps is_snn: bool = True #: Always ``True`` in case of spiking neural networks def __select_neuron(self, neuron: RecursiveConfigDict) -> type[nn.Module]: """Select a spiking neuron class from a kind specified in configuration file. The class will be looked up by its name in the following modules successively, first match is used: #. :mod:`spikingjelly.activation_based.neuron` #. :mod:`qualia_plugin_snn.learningmodel.pytorch.layers.CustomNode` #. :mod:`qualia_plugin_snn.learningmodel.pytorch.quantized_SNN_layers` :meta public: :param neuron: A spiking neuron configuration dict :return: The class corresponding to the ``kind`` specified in the neuron configuration dict :raise ValueError: When the ``'kind'`` key cannot be found in the ``neuron`` dict :raise TypeError: When the value associated to ``kind`` is not a string :raise AttributeError: When the class for ``kind`` cannot be looked up """ # SpikeNeuron Selection if 'kind' not in neuron: logger.error('`params.neuron.kind` is required') raise ValueError if not isinstance(neuron['kind'], str): logger.error('`params.neuron.kind` must be a string, got: %s', type(neuron['kind'])) raise TypeError neurons_kind = neuron['kind'] neuron_type: type[nn.Module] try: neuron_type = getattr(sj, neurons_kind) except AttributeError: logger.info("Module 'spikingjelly.activation_based.neuron' has no attribute %s", neurons_kind) logger.info('Checking learningmodel/pytorch/layers/CustomNode') try: neuron_type = getattr(CustomNode, neurons_kind) except AttributeError: logger.info("Module 'learningmodel.pytorch.layers.CustomNode' has no attribute %s", neurons_kind) logger.info('Checking learningmodel/pytorch/Quantized_SNN_layers') try: neuron_type = getattr(qsj, neurons_kind) except AttributeError: logger.exception("Module 'learningmodel.pytorch.Quantized_SNN_layers' has no attribute %s", neurons_kind) raise return neuron_type def __extract_neuron_params(self, neuron: RecursiveConfigDict) -> dict[str, RecursiveConfigUnion | None]: """Extract params from the given ``neuron`` configuration dict, also convert ``v_reset``. ``v_reset`` is specified as either a float (hard-reset) or ``false`` (soft-reset) in the TOML configuration since there is no ``None`` equivalent in TOML. However SpikingJelly neurons use ``None`` to signify soft-reset, so convert ``v_reset=false`` to ``v_reset=None``. :meta public: :param neuron: The spiking neuron configuration dict :return: The ``params`` dict for the given neuron configuration dict with converted ``v_reset`` :raise TypeError: When the value associated to ``params`` is not a dict """ # Extract neuron params neuron_params = neuron.get('params', {}) if not isinstance(neuron_params, dict): logger.error('`params.neuron.params` must be a dict, got: %s', type(neuron_params)) raise TypeError # Replace v_reset = False with v_reset = None for soft reset of SpikingJelly filtered_neuron_params: dict[str, RecursiveConfigUnion | None] = { k: v for k, v in neuron_params.items() if k != 'v_reset' } if 'v_reset' in neuron_params: if neuron_params['v_reset'] is False: filtered_neuron_params['v_reset'] = None else: filtered_neuron_params['v_reset'] = neuron_params['v_reset'] return filtered_neuron_params
[docs] def create_neuron(self, quant_params: QuantizationConfig | None = None) -> nn.Module: """Instanciate a spiking neuron from the kind and params found in ``neuron`` of :meth:``__init__``. :param quant_params: Optional quantization configuration dict in case of quantized network, see :class:`qualia_core.learningmodel.pytorch.Quantizer.Quantizer` :return: A spiking neuron instance """ if quant_params is not None: return self.__neuron_type(**self.__neuron_params, quant_params=quant_params) return self.__neuron_type(**self.__neuron_params)
[docs] def __init__(self, input_shape: tuple[int, ...], output_shape: tuple[int, ...], timesteps: int, neuron: RecursiveConfigDict | None) -> None: """Construct :class:`SNN`. :attr:`step_mode` is extracted from the neuron configuration dict ``neuron``. :meth:`__select_neuron` and :meth:`__extract_neuron_params` are called to prepare the neuron for instanciation with :meth:`create_neuron` which should be used in derived classes to instanciate the spiking neurons. Below is an example of a neuron configuration dict for SpikingJelly's multi-step :class:`spikingjelly.activation_based.neuron.IFNode` soft-reset with threshold at 1.0. * Python .. code-block:: python neuron = { 'kind': 'IFNode', 'params': { 'v_threshold': 1.0, 'v_reset': False, 'step_mode': 'm', } } * TOML .. code-block:: toml [[model]] params.neuron.kind = 'IFNode' params.neuron.params.v_threshold = 1.0 params.neuron.params.v_reset = false params.neuron.params.step_mode = 'm' :param input_shape: Input shape passed to :class:`qualia_core.learningmodel.pytorch.LearningModel.LearningModel` with ``timesteps`` prepended :param output_shape: Output shape passed to :class:`qualia_core.learningmodel.pytorch.LearningModel.LearningModel` :param timesteps: Number of timesteps :param neuron: Spiking neuron configuration dict :raise ValueError: When ``neuron`` is ``None`` or empty :raise TypeError: When the value associated to ``params.step_mode`` is not a string """ super().__init__(input_shape=(timesteps, *tuple(input_shape)), output_shape=output_shape) self.timesteps = timesteps if not neuron: logger.error('`params.neuron` is required') raise ValueError # Find neuron class self.__neuron_type = self.__select_neuron(neuron) self.__neuron_params = self.__extract_neuron_params(neuron) # Extract step_mode step_mode = self.__neuron_params.get('step_mode', 's') if not isinstance(step_mode, str): logger.error('`params.neuron.params.step_mode` must be a string, got: %s', type(step_mode)) raise TypeError self.step_mode = step_mode