Source code for qualia_plugin_snn.learningmodel.pytorch.QuantizedSCNN

"""Contains the template for a quantized convolutional spiking neural network."""

from __future__ import annotations

import logging
import math
import sys
from collections import OrderedDict

import numpy as np
from qualia_core.learningmodel.pytorch import layers1d, layers2d
from qualia_core.learningmodel.pytorch.layers.quantized_layers import QuantizedIdentity
from qualia_core.typing import TYPE_CHECKING
from torch import nn

from qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly import layers1d as sjlayers1d
from qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly import layers2d as sjlayers2d

from .SNN import SNN

if TYPE_CHECKING:
    from types import ModuleType  # noqa: TC003

    import torch
    from qualia_core.learningmodel.pytorch.Quantizer import QuantizationConfig  # noqa: TC002
    from qualia_core.typing import RecursiveConfigDict

if sys.version_info >= (3, 12):
    from typing import override
else:
    from typing_extensions import override

logger = logging.getLogger(__name__)

[docs] class QuantizedSCNN(SNN): """Quantized convolutional spiking neural network template. Should have topology identical to :class:`qualia_plugin_snn.learningmodel.pytorch.SCNN.SCNN` but with layers replaced with their quantized equivalent. """ layers: nn.ModuleDict #: List of sequential layers of the SCNN model
[docs] def __init__(self, # noqa: PLR0913, PLR0915, PLR0912, C901 input_shape: tuple[int, ...], output_shape: tuple[int, ...], filters: list[int], kernel_sizes: list[int], paddings: list[int], strides: list[int], dropouts: float | list[float], pool_sizes: list[int], fc_units: list[int], quant_params: QuantizationConfig, batch_norm: bool = False, # noqa: FBT001, FBT002 prepool: int | list[int] = 1, postpool: int | list[int] = 1, neuron: RecursiveConfigDict | None = None, timesteps: int = 4, gsp: bool = False, # noqa: FBT001, FBT002 dims: int=1) -> None: """Construct :class:`QuantizedSCNN`. :param input_shape: Input shape :param output_shape: Output shape :param filters: List of ``out_channels`` for each QuantizedConv layer, also defines the number of QuantizedConv layers :param kernel_sizes: List of ``kernel_size`` for each QuantizedConv layer, must of the same size as ``filters`` :param paddings: List of ``padding`` for each QuantizedConv layer, must of the same size as ``filters`` :param strides: List of ``stride`` for each QuantizedConv layer, must of the same size as ``filters`` :param dropouts: List of Dropout layer ``p`` to apply after each QuantizedConv or QuantizedLinear layer, must be of the same size as ``filters`` + ``fc_units``, no layer added if element is 0 :param pool_sizes: List of QuantizedMaxPool layer ``kernel_size`` to apply after each QuantizedConv layer, must be of the same size as ``filters``, no layer added if element is 0 :param fc_units: List of QuantizedLinear layer ``out_features`` to add at the end of the network, no layer added if empty :param batch_norm: If ``True``, add a QuantizedBatchNorm layer after each QuantizedConv layer, otherwise no layer added :param prepool: QuantizedAvgPool layer ``kernel_size`` to add at the beginning of the network, no layer added if 0 :param postpool: QuantizedAvgPool layer ``kernel_size`` to add after all QuantizedConv layers, no layer added if 0 :param neuron: Spiking neuron configuration, see :meth:`qualia_plugin_snn.learningmodel.pytorch.SNN.SNN.__init__`, ``'Quantized'`` is automatically prepended to ``neuron.kind`` :param timesteps: Number of timesteps :param gsp: If ``True``, a single QuantizedGlobalSumPool layer is added instead of QuantizedLinear layers :param dims: Either 1 or 2 for 1D or 2D convolutional network. :param quant_params: Quantization configuration dict, see :class:`qualia_core.learningmodel.pytorch.Quantizer.Quantizer` """ # Prepend Quantized to the neuron kind to instantiate quantized spiking neurons if neuron is not None and 'kind' in neuron and isinstance(neuron['kind'], str): neuron['kind'] = 'Quantized' + neuron['kind'] super().__init__(input_shape=input_shape, output_shape=output_shape, timesteps=timesteps, neuron=neuron) from spikingjelly.activation_based.layer import Dropout, Flatten # type: ignore[import-untyped] from qualia_plugin_snn.learningmodel.pytorch.layers.spikingjelly.quantized_layers import QuantizedLinear layers_t: ModuleType sjlayers_t: ModuleType if dims == 1: layers_t = layers1d sjlayers_t = sjlayers1d elif dims == 2: # noqa: PLR2004 layers_t = layers2d sjlayers_t = sjlayers2d else: logger.error('Only dims=1 or dims=2 supported, got: %s', dims) raise ValueError # Backward compatibility for config not defining dropout as a list dropout_list = [dropouts] * (len(filters) + len(fc_units)) if not isinstance(dropouts, list) else dropouts layers: OrderedDict[str, nn.Module] = OrderedDict() layers['identity1'] = QuantizedIdentity(quant_params=quant_params) if (math.prod(prepool) if isinstance(prepool, list) else prepool) > 1: layers['prepool'] = sjlayers_t.QuantizedAvgPool(tuple(prepool) if isinstance(prepool, list) else prepool, step_mode=self.step_mode, quant_params=quant_params) layers['conv1'] = sjlayers_t.QuantizedConv(in_channels=input_shape[-1], out_channels=filters[0], kernel_size=kernel_sizes[0], padding=paddings[0], stride=strides[0], bias=not batch_norm, quant_params=quant_params, step_mode=self.step_mode) if batch_norm: layers['bn1'] = sjlayers_t.QuantizedBatchNorm(filters[0], quant_params=quant_params, step_mode=self.step_mode) layers['neuron1'] = self.create_neuron(quant_params=quant_params) if dropout_list[0]: layers['dropout1'] = Dropout(dropout_list[0], step_mode=self.step_mode) if pool_sizes[0]: layers['maxpool1'] = sjlayers_t.QuantizedMaxPool(pool_sizes[0], quant_params=quant_params, step_mode=self.step_mode) i = 2 for in_filters, out_filters, kernel, pool_size, padding, stride, dropout in zip(filters, filters[1:], kernel_sizes[1:], pool_sizes[1:], paddings[1:], strides[1:], dropout_list[1:]): layers[f'conv{i}'] = sjlayers_t.QuantizedConv(in_channels=in_filters, out_channels=out_filters, kernel_size=kernel, padding=padding, stride=stride, bias=not batch_norm, quant_params=quant_params, step_mode=self.step_mode) if batch_norm: layers[f'bn{i}'] = sjlayers_t.QuantizedBatchNorm(out_filters, quant_params=quant_params, step_mode=self.step_mode) layers[f'neuron{i}'] = self.create_neuron(quant_params=quant_params) if dropout: layers[f'dropout{i}'] = Dropout(dropout, step_mode=self.step_mode) if pool_size: layers[f'maxpool{i}'] = sjlayers_t.QuantizedMaxPool(pool_size, quant_params=quant_params, step_mode=self.step_mode) i += 1 if (math.prod(postpool) if isinstance(postpool, list) else postpool) > 1: layers['postpool'] = sjlayers_t.QuantizedAvgPool(tuple(postpool) if isinstance(postpool, list) else postpool, step_mode=self.step_mode, quant_params=quant_params) if gsp: layers[f'conv{i}'] = sjlayers_t.QuantizedConv(in_channels=filters[-1], out_channels=output_shape[0], kernel_size=1, padding=0, stride=1, bias=True, quant_params=quant_params, step_mode=self.step_mode) layers['gsp'] = layers_t.QuantizedGlobalSumPool(quant_params=quant_params) else: layers['flatten'] = Flatten(step_mode=self.step_mode) in_features = np.array(input_shape[:-1]) // np.array(prepool) for _, kernel, pool, padding, stride in zip(filters, kernel_sizes, pool_sizes, paddings, strides): in_features += np.array(padding) * 2 in_features -= (kernel - 1) in_features = np.ceil(in_features / stride).astype(int) if pool: in_features = in_features // pool in_features = in_features // np.array(postpool) in_features = in_features.prod() in_features *= filters[-1] j = 1 for in_units, out_units, dropout in zip((in_features, *fc_units), fc_units, dropout_list[len(filters):]): layers[f'fc{j}'] = QuantizedLinear(in_units, out_units, quant_params=quant_params, step_mode=self.step_mode) layers[f'neuron{i}'] = self.create_neuron(quant_params=quant_params) if dropout: layers[f'dropout{i}'] = Dropout(dropout, step_mode=self.step_mode) i += 1 j += 1 layers[f'fc{j}'] = QuantizedLinear(fc_units[-1] if len(fc_units) > 0 else in_features, output_shape[0], quant_params=quant_params, step_mode=self.step_mode) self.layers = nn.ModuleDict(layers)
[docs] @override def forward(self, input: torch.Tensor) -> torch.Tensor: """Forward calls each of the SCNN :attr:`layers` sequentially. :param input: Input tensor :return: Output tensor """ x = input for layer in self.layers: x = self.layers[layer](x) return x