qualia_core.qualia module
- class qualia_core.qualia.TrainResult(name: 'str', i: 'int', model: 'Any', params: 'int', mem_params: 'int', acc: 'float', metrics: 'dict[str, Any]', datamodel: 'DataModel[RawData]', trainset: 'RawData', testset: 'RawData', framework: 'LearningFramework[Any]', batch_size: 'int', optimizer: 'Any', log: 'bool', dataaugmentations: 'list[DataAugmentation]', experimenttracking: 'ExperimentTracking | None')[source]
Bases:
object
- model: Any
- framework: LearningFramework[Any]
- optimizer: Any
- experimenttracking: ExperimentTracking | None
- qualia_core.qualia.instantiate_model(dataset: RawData, framework: LearningFramework[T], model: type[T], model_params: ModelParamsConfigDict | None, model_name: str, iteration: int, load: bool = True) T [source]
- qualia_core.qualia.train(datamodel: RawDataModel, train_epochs: int, iteration: int, framework: LearningFramework[T], model: type[T], model_name: str, model_params: RecursiveConfigDict | None = None, batch_size: int | None = None, optimizer: OptimizerConfigDict | None = None, load: bool = False, train: bool = True, evaluate: bool = True, dataaugmentations: list[DataAugmentation] | None = None, experimenttracking: ExperimentTracking | None = None, use_test_as_valid: bool = False) TrainResult [source]
- qualia_core.qualia.prepare_deploy(datamodel, model_kind, model_name, model, framework, iteration, deploy_target, quantize='float32', optimize=None, compress=1, tag='main', converter=None, converter_params={}, deployers=None, deployer_params={}, representative_dataset=None)[source]