Source code for qualia_core.main

#!/usr/bin/env python3

from __future__ import annotations

import logging
import sys
from pathlib import Path
from typing import Any

import colorful as cf  # type: ignore[import-untyped]

import qualia_core.utils.args
import qualia_core.utils.config
import qualia_core.utils.plugin
from qualia_core.typing import TYPE_CHECKING
from qualia_core.utils.logger import Logger
from qualia_core.utils.logger.setup_root_logger import setup_root_logger
from qualia_core.utils.merge_dict import merge_dict

if TYPE_CHECKING:
    from types import ModuleType  # noqa: TCH003

    from qualia_core.postprocessing.Converter import Converter  # noqa: TCH001
    from qualia_core.typing import ConfigDict

logger = logging.getLogger(__name__)

[docs] def qualia(action: str, config: ConfigDict, configname: str) -> dict[str, list[Any]]: # Must be called first to configure devices before initializing Keras from qualia_core.utils import TensorFlowInitializer tfi = TensorFlowInitializer() tfi(seed=config['bench']['seed'], reserve_gpu=(config['bench'].get('gpus', None) and 'train' in sys.argv[2:]) or config['bench'].get('reserve_gpu', False), gpu_memory_growth=config['bench'].get('gpu_memory_growth', True)) from qualia_core import command from qualia_core.utils import Git qualia = qualia_core.utils.plugin.load_plugins(config['bench'].get('plugins', [])) git = Git() Logger.logpath /= config['bench']['name'] # Store logfiles in separate directory according to the config bench name if git.short_hash: Logger.prefix = f'{git.short_hash}_' # Add prefix according to current git commit else: logger.info('Local git repository not found, last commit hash will not be prepended to log file names') loggers: dict[str, Logger[Any]] = {} # Keep track of the loggers we used to return them learningframework = getattr(qualia.learningframework, config['learningframework']['kind'])(**config['learningframework'].get('params', {})) dataset = getattr(qualia.dataset, config['dataset']['kind'])(**config['dataset'].get('params', {})) converter: type[Converter] = getattr(qualia.converter, config.get('deploy', {}).get('converter', {}).get('kind', ''), None) if config.get('deploy', {}).get('converter', '').get('kind') and not converter: logger.error("Converter '%s' not found", config['deploy']['converter']['kind']) raise ValueError deployers: ModuleType = getattr(qualia.deployment, config.get('deploy', {}).get('deployer', {}).get('kind', ''), None) if not deployers and converter and converter.deployers is not None: deployers = converter.deployers dataaugmentations = [getattr(learningframework.dataaugmentations, da['kind'])(**da.get('params', {})) for da in config.get('data_augmentation', {})] if action == 'preprocess_data': preprocess_data_command = command.PreprocessData() loggers.update(preprocess_data_command(qualia=qualia, dataset=dataset, config=config)) return {k: v.content for k, v in loggers.items()} dataset_pipeline = dataset for preprocessing in config.get('preprocessing', []): dataset_pipeline = getattr(qualia.preprocessing, preprocessing['kind'])(**preprocessing.get('params', {})).import_data(dataset_pipeline) data = dataset_pipeline.import_data() if action == 'train': train_command = command.Train() loggers.update(train_command(qualia=qualia, learningframework=learningframework, dataaugmentations=dataaugmentations, data=data, config=config)) elif action == 'prepare_deploy': prepare_deploy_command = command.PrepareDeploy() loggers.update(prepare_deploy_command(qualia=qualia, learningframework=learningframework, converter=converter, deployers=deployers, data=data, config=config)) elif action == 'deploy_and_evaluate': deploy_and_evaluate_command = command.DeployAndEvaluate() loggers.update(deploy_and_evaluate_command(qualia=qualia, learningframework=learningframework, dataaugmentations=dataaugmentations, converter=converter, deployers=deployers, data=data, config=config)) elif action == 'parameter_research': parameter_research = command.ParameterResearch() loggers.update(parameter_research(qualia=qualia, learningframework=learningframework, dataaugmentations=dataaugmentations, data=data, config=config)) else: logger.error('Invalid action: %s', action) raise ValueError return {k: v.content for k, v in loggers.items()}
[docs] def main() -> int: cf.use_style('solarized') # type: ignore[untyped-def] if len(sys.argv) < 3: print(f'Usage: {sys.argv[0]} <config.toml> <preprocess_data|train|prepare_deploy|deploy_and_evaluate|parameter_research> [config_params...]') sys.exit(1) setup_root_logger(colored=True) config, configname = qualia_core.utils.config.parse_config(Path(sys.argv[1])) config_overwrite = qualia_core.utils.args.parse_args(sys.argv[3:]) # Overwrite config file params with command line arguments config_overwritten = merge_dict(config_overwrite, config, merge_lists=True) validated_config = qualia_core.utils.config.validate_config_dict(config_overwritten) if validated_config is None: logger.error('Could not load configuration.') return 1 loggers = qualia(sys.argv[2], config=validated_config, configname=configname) logger.info('%s', loggers) return 0
if __name__ == '__main__': sys.exit(main())