Source code for qualia_core.command.DeployAndEvaluate

from __future__ import annotations

import itertools
from typing import Any

import colorful as cf  # type: ignore[import-untyped]

from qualia_core.evaluation.Stats import StatsFields
from qualia_core.qualia import deploy, evaluate, gen_tag, instantiate_model
from qualia_core.typing import TYPE_CHECKING
from qualia_core.utils.logger import CSVLogger, Logger

if TYPE_CHECKING:
    from types import ModuleType  # noqa: TCH003

    from qualia_core.dataaugmentation.DataAugmentation import DataAugmentation  # noqa: TCH001
    from qualia_core.datamodel.RawDataModel import RawDataModel  # noqa: TCH001
    from qualia_core.learningframework.LearningFramework import LearningFramework  # noqa: TCH001
    from qualia_core.postprocessing.Converter import Converter  # noqa: TCH001
    from qualia_core.typing import ConfigDict
    from qualia_core.utils.plugin import QualiaComponent  # noqa: TCH001


[docs] class DeployAndEvaluate: def __call__(self, # noqa: PLR0913 qualia: QualiaComponent, learningframework: LearningFramework[Any], dataaugmentations: list[DataAugmentation], converter: type[Converter[Any]], deployers: ModuleType, data: RawDataModel, config: ConfigDict) -> dict[str, Logger[StatsFields]]: loggers: dict[str, Logger[StatsFields]] = {} log: CSVLogger[StatsFields] = CSVLogger('evaluate') loggers['evaluate'] = log # Write column names log.fields = StatsFields for i in range(config['bench']['first_run'], config['bench']['last_run']+1): for m, q, o, c in itertools.product(config['model'], config['deploy']['quantize'], config['deploy'].get('optimize', ['']), config['deploy'].get('compress', [1])): if m.get('disabled', False): continue # Postprocessings can change model name, frameworks, mem_params model_name = m['name'] fmem_params = lambda framework, model: framework.n_params(model) * 4 # By default models have 4-bytes params for postprocessing in config.get('postprocessing', []): ppp = {k: v for k,v in postprocessing.get('params', {}).items()} # Workaround tomlkit bug where some nested dict would lose their items pp = getattr(qualia.postprocessing, postprocessing['kind'])(**ppp) model_name = pp.process_name(model_name) learningframework = pp.process_framework(learningframework) #mem_params = pp.process_mem_params(mem_params) #FIXME: handled by converter instead #model = framework.load(f'{model_name}_r{i}', m['kind']) # Instantiate model model = instantiate_model(dataset=data.sets.test, framework=learningframework, model=getattr(learningframework.learningmodels, m['kind']), model_params=m.get('params', {}), model_name=model_name, iteration=i, load=False # Model params will be loaded after postprocessings ) # Postprocessings can change model topology with PyTorch, needs to be done after instantiating model with new name for postprocessing in config.get('postprocessing', []): pp = getattr(qualia.postprocessing, postprocessing['kind'])(**postprocessing.get('params', {})) model, m = pp.process_model(model, m, framework=learningframework) # Show model architecture learningframework.summary(model) # Load weights after topology optionally changed model = learningframework.load(f'{model_name}_r{i}', model) # Converter can affect mem_params if there is quantization if not converter: converter = getattr(m['kind'], 'converter', None) fmem_params = converter(quantize=q).process_mem_params(fmem_params) if converter else fmem_params tag = gen_tag(model_name, q, o, i, c) print(f'{cf.bold}Deploying {cf.blue}{model_name}{cf.close_fg_color}, run {cf.red}{i}{cf.close_fg_color}, tag {cf.yellow}{tag}{cf.reset}') result_deploy = deploy(model_kind=m['kind'], deploy_target=config['deploy']['target'], tag=tag, deployers=deployers, deployer_params=config['deploy'].get('deployer', {}).get('params', {})) if not result_deploy: continue print(f'{cf.bold}Evaluating {cf.blue}{model_name}{cf.close_fg_color}, run {cf.red}{i}{cf.close_fg_color}, tag {cf.yellow}{tag}{cf.reset}') result = evaluate(datamodel=data, model_kind=m['kind'], model_name=model_name, model=model, framework=learningframework, iteration=i, target=config['deploy']['target'], quantization=q, fmem_params=fmem_params, tag=tag, limit=config['deploy'].get('limit', None), evaluator=getattr(result_deploy, 'evaluator', getattr(converter, 'evaluator', None) if converter else None), evaluator_params=config['deploy'].get('evaluator', {}).get('params', {}), dataaugmentations=dataaugmentations) # fill in ROM and RAM size from deployment result if result: result.rom_size = result_deploy.rom_size result.ram_size = result_deploy.ram_size print(result) if result is not None: log(result.asnamedtuple()) return loggers